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Two-point time correlations up to eighth order of longitudinal velocity fluctua- 
tions in grid-generated turbulence have been measured using linearized hot-wire 
anemometry, digital sampling, and a high-speed digital computer. A novel 
feature of the present measurements is the adoption of digital Fourier analysis, 
using the recently developed fast-Fourier transform method. The joint prob- 
ability density function for the velocity fluctuations at two points separated in 
time is found to be significantly non-Gaussian. All measured even-order corre- 
lationsarenearlyidenticalwiththosereported by Frenkiel & Klebanoff (1967a, b) ,  
and higher-order correlations may be accurately predicted from the second-order 
correlation by assuming a Gaussian joint probability density. All individual 
odd-order correlations are substantially different from those reported by Frenkiel 
& Klebanoff. In  particular, all mean values of odd powers of the fluctuating 
velocity are nearly zero, and the correlations are nearly antisymmetrical func- 
tions of the time delay as would be the case for purely isotropic homogeneous 
turbulence. In  spite of the large difference between the individual measured odd- 
order correlations and previous measurements, quantities such as the skewness 
and skewness factor derived from certain combinations of the correlations are 
found to be quite insensitive to observed differences in the form of the correla- 
tions and are very similar to previous measurements. 

1. Introduction 
In the course of a continuing experimental investigation of grid-generated 

turbulence, we have developed a method for very fast and efficient digital com- 
puter calculation of two-point correlations of arbitrary order. The heart of the 
method is the adoption of digital harmonic analysis, using the recently developed 
‘fast Fourier transform ’, an efficient scheme for obtaining the discrete Fourier 
transform of a time series of sampled data. The technique should prove useful for 
a variety of future measurements in turbulent flows. To date, two-point time 
correlations up to eighth order of the longitudinal fluctuating component of 
velocity at  a single point in grid turbulence have been measured using linearized 
constant-temperature hot-wire anemometry and the discrete transform method. 
Other detailed measurements of these correlations, obtained by direct calcula- 
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tion of mean lagged products, have been reported recently by Frenkiel & Kle- 
banoff ( 1 9 6 7 ~ )  b, hereinafter often referred to as I and 11). Using constant-current 
hot-wire anemometry, they found that measurements of odd-order correlations 
required large corrections for the non-linear response of the hot wire. The 
corrections were frequently as large as the maximum values of the measured 
correlation functions. Corrections for the non-linear response were found to be 
negligible for even-order correlations. In the present measurements, constant- 
temperature, linearized hot-wire anemometry was used in order to avoid the 
necessity of such corrections. 

Prenkiel & Klebanoff also found that a non-Gaussian joint-probability distri- 
bution of Gram-Charlier type described relations between their odd-order corre- 
lations fairly well, while the even-order correlations were related according to a 
Gaussian joint distribution, except for very small time separations. 

The original goal of the present investigation was to  obtain correlations up to 
only third order t o  study the dynamics of energy transfer in grid turbulence. This 
study is in progress. When the present third-order correlations were found to be 
significantly different from those of Frenkiel & Klebanoff, the measurements 
were extended to higher order to obtain a full comparison with previous 
results. Hence, all the higher correlations reported in I and I1 have been 
measured. 

2. Experimental arrangement 
The experiments were carried out in the 76 cm by 76 cm by 9 m test section of 

the low-turbulence wind tunnel in the Department of the Aerospace and Mechani- 
cal Engineering Sciences. Biplane grids of round, polished dural rods were located 
3-4 m from the end of the contraction section. Two different grids were used, 
having mesh spacings M of 2.54 and 5.08 cm with rods of 0.477 and 0.953 cm 
diameter, respectively. The mean velocity U was 15.7 m/sec for the 2.54 em grid 
measurements and 7.7 m/sec for the 5.08 cm grid measurements. The correspond- 
ing Reynolds numbers based on mesh spacing were 25,600 and 25,300 for the high- 
and low-speed data, respectively. The high-speed, small-grid experimental con- 
ditions were nearly identical with those of Frenkiel & Klebanoff (1967a, b )  with 
respect to grid geometry, mean velocity and x / M ,  where x is the distance down- 
stream from the grid. Conventional analogue measurements of u and v, the longi- 
tudinal and transverse turbulent intensities, were made over a short range of 
xlM in the initial period of decay. As shown in figure 1, the decay of the velocity 
fluctuations in this range, when made appropriately dimensionless, is practically 
identical for both experimental conditions. The ratio ( (uz)/(v2))~, a measure of 
the anisotropy of the turbulence, decreases as x / M  increases, with an average 
value of 1.11 over the range 39 d x /M < 55, about 3-3 % larger than reported by 
Comte-Bellot & Corrsin (1966) for comparable mesh Reynolds number, the same 
range of x / M ,  and the same type of grid. 

All detailed digital measurements were made at  x /M = 48. A tungsten hot 
wire, 1 mm long and 5 p  in diameter was used to measure u, the longitudinal 
fluctuating component of the turbulent velocity field. A DISA 55 A 01 amplifier 
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was used to operate the hot wire at  constant resistance, with an overheat ratio 
of 0.5. The hot-wire output was linearized using a DISA 55 D 10 linearizer. The 
linearized hot-wire signal was F M  tape recorded at  a tape speed of 153.4 cmjsec 
using a Sanborn 3917 A recorder. The analogue tape was later played back and 
sampled with an analogue-to-digital converter at  a rat'e somewhat faster than 
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FIGURE 1. Decay of turbulent energy behind the two grids. M = 5.08 em, U = 7.7 m/sec : 
0, U2/(ua); A, U2/(v2) .  M = 2.54 em, U = 15.7 misee: 0, Uz/(u2);  A, Uz/(vz) .  

twice the highest frequency for which the turbulent spectrum was unmistakably 
distinguishable from electronic noise. This highest frequency was determined 
from a preliminary spectral analysis and was equal to 7 kHz and 1800 Hz for the 
2-54 cm and 5.08 em grid data, respectively. The corresponding sampling rates 
were 16,000 samples/sec and 5600 samples/sec. 

The digital data were processed in several steps, using a CDC 3600 computer. 
As an initial step, the running mean values of (u2) and (u3) were computed to 
determine the amount of data necessary to provide stationary values of these 
quantities. Sampling time intervals of 35.6 and 54.9 see were found to be ade- 
quate for the data at  high and low speeds, respectively, and all subsequent 
averages were based on four samples of these lengths. 
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3. Distribution of velocity fluctuations 
The one-dimensional probability densities p ( u / v ) ,  where r~ = (u2)&, were 

found to be closely Gaussian, as illustrated in figure 2. The joint probability 
density for t.he velocity taken at two different times 

P [ W ~ ,  u(t+7)/r~l = P @ ~ ,  ~ 7 ~ )  

was found to be significantly non-Gaussian, as shown in figure 3. Here 7 was 
chosen to correspond to a correlation coefficient of 0.686, the same as for the 
data used to compute the joint distribution for the longitudinal component of 
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FIGURE 2.  One-dimensional probability density for velocity fluctuations. M = 2.54 cm, 

U = 15.7 m/sec: solid line is Gaussian distribution. 

velocity measured at  two laterally separated points in grid turbulence by Frenkiel 
& Klebanoff (1965). The departwes from Gaussianity are roughly the same as 
those found by Frenkiel & Klebanoff. The amount of scatter in the present data is 
somewhat smaller due to the larger number of velocity samples used to computJe 
the probabilities (409,600 in the present case as compared with 160,020). 
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FIGURE 3. Joint probability distribution p(u,, uz)  for selected values of u1 = u ( t ) / ~ .  Solid 
lines are two-dimensional Gaussian distribution corresponding to a correlation coefficient 
of 0.686. 

4. Correlations 
4.1. Computation method 

A series of discrete sequential data samples is customarily referred to as a time 
series. Cooley & Tukey (1965) have shown that the computationally fastest way 
to calculate mean lagged products (correlation functions) for a time series is to 
begin by calculating all Fourier coefficients of the series with a fast-Fourier 
transform and then to fast-Fourier retransform, a sequence made up of u!+ b;, 
where uf+ ib, are the complex Fourier coefficients. The fast-Fourier transform 
is simply an efficient method for computing the discrete Fourier transform. Since 
calculation of the fast-Fourier transform of a series of N terms requires of the 
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order of N log, N operations, while straightforward calculation of correlations by 
lagged products requires of the order of N 2  operations, enormous savings in 
computing time can be realized for the long time series required for turbulence 
measurements. Both the energy spectrum and autocorrelation are obtained in 
considerably less time than is required to compute the correlation function alone 
by direct computation of lagged products. A detailed account of the fast-Fourier 
discrete transform method has been given by Gentlemen & Sande (1966). Briefly, 
the discrete transform procedure is as follows: if u, (t = 0, 1 , 2 ,  ..., N -  1) are the 
values of a time series, the discrete Fourier transform of the series is 

N-1 

t = o  
U, = u,exp ( - i277ft/N) 

= CLf+ibf ( f =  0, 1 ,..., N-1), 

where the U, are complex Fourier coefficients. The u, may in general be complex. 
The discrete transform is equivalent to the Fourier transform of the truncated 
continuous function (defined over a time interval T) from which the samples of 
the time series were obtained, namely 

where U(f) is a complex function. off, and l /N[u;  + b;] is equivalent to the energy 
spectrum E ( f )  = l/Tl U(f)I2 of the continuous process from which the time series 
was derived. 

The normalized autocorrelation function R(7) is defined as 

where * denotes complex conjugate. Letting t + 7 = y, 

1 
= p ( 7 )  O W * (  - 7 ) ,  

where 0 denotes convo1ution.t Then, from the convolution theorem 

where 8-l denotes the inverse Fourier transform. 

tions of arbitrary order, with the result 
The above procedure is readily generalized to the case of two-point correla- 

t This form of the convolution theorem is discussed by Bracewell (1965). 
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1 
and ( u ~ ) ~ ( ~ + ~ ) R ~ , ~ ( T )  = (un(t)um(t+7)) = -s-'[Uz( - f)&( - f)], 

where U,(f) and U,(f) are the complex Fourier transforms of the time series for 
um(t) and u"(t), respectively. The computing procedure for each correlation is 
first to compute the discrete Fourier transform Ir,(f) for each series um(t), then 
to form the products of the complex coefficients of the two series for each fre- 
quency, and finally, to compute the inverse discrete Fourier transform of the 
resulting complex series to obtain Rmrn. Since the Fourier transform of each 
series provides values for both positive and negative frequencies in the transform 
space, both Rm~n(r) and Rnsm(7) are obtained from the same fast-Fourier trans- 
forms and inverse transforms. 

The digital data were Fourier transformed in records containing 2048 digital 
velocities, the maximum number allowable with the available computer memory. 
Each record corresponded to a time interval about 20 times longer than the time 
separation 7 required for the double correlations to decay to zero. The number 
of discrete frequencies in each transform was also chosen as 2048, providing a 
maximum frequency resolution of 7.82 and 2-74 Hz for the data at  high and low 
speeds, respectively. The appropriate products of the discrete transforms were 
averaged over 200 and 150 records for the two cases, corresponding to time 
intervals of 25-6 and 54.9 sec as discussed in $ 2 .  These averaged products, each 
consisting of 2048 complex numbers, were then inverse fast-Fourier transformed 
to obtain the correlation functions. Since each transformed time series is used 
several times for different correlations, the relative efficiency of the analysis 
increases as additional higher-order correlations are computed. The present 
measurements did not take full advantage of this fact, because available funds 
made it desirable to  restrict the computation to those correlations computed in 
I and 11. For example, to compute E ( f ) ,  E'J(T), R2J(7) and R1,2(7) for a series 
of 409,600 velocity samples required about 10 min of computer time, while the 
computation of the other 14 correlations measured required an additional 
35 min. Four samples of data for each mean velocity were processed in the above 
manner, and the resulting correlation functions for the four samples were 
averaged to produce the final measured correlation functions. As one programme 
check, several double and triple correlations were also calculated directly from 
mean lagged products as in I and 11. These correlations were in close agreement 
with the results from the fast-Fourier transform method. Several runs were 
also made to  study the influence of electronic noise by processing sampled 
data obtained with no grid in the tunnel. The resulting noise correlations, which 
were dominated mainly by a periodic 60 Hz component, were a t  most 
times as large as the maximum values of the measured triple correlations, 
indicating that the influence of noise is negligible. 

T 

4.2. Results for even-order correlations 

For all even-order correlations (m + n even), differences between the results of 
the four individual samples were negligibly small, and a single sample would 
have been sufficient. The measured correlations for both high and low speeds 
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were generally in very close agreement with the results of Frenkiel & Klebanoff 
(1967a, b )  for all even-order correlations. The largest differences were found for 
the double correlation. As shown in figure 4, the results were identical for 
U r / M  6 1.2. 
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FIGURE 4. Correlation functions. 0, M = 5.08 cm, U = 7-7 m/sec; 0, ill = 2.54 cm, 
U = 15.7 m/sec; -, Frenkiel & Klebanoff (1967a). 

However, for Ur/M > 1.2 the correlation obtained digitally in I monotonically 
approaches a small positive value, whereas the present double correlations pass 
through zero a t  about U r / M  = 2.8, reach a small negative maximum, and then 
return to zero as Ur/M further increases. This behaviour is in agreement with 
the analogue data of Favre, Gaviglio & Dumas (1955) ,  over the entire range of 
U r / M .  The apparent improvement in resolution of the present digital data for 
large Ur/M most probablyresulted from using samples of data lasting about twice 
as long as those employed in I. 

The one-dimensional energy spectra El,  normalized with the Kolmogoroff 
velocity scale kj&e/v)*, are plotted in figure 5 as a function of wave-number 
k = 27rfl.V normalized with the Kolmogoroff wave-number k, = ( c / v ~ ) ~  The 
dissipation rate e = -+d/dt((u2)+2(v2))  was computed from the data of 
figure 1. The Kolmogoroff length scale (v3/e)* was 0.24 and 0.47 mm for the high- 
and low-speed data, respectively. For clarity, only a few points from the total of 
2048 for each spectrum have been plotted. The data for both experimental con- 
ditions lie on a single curve, which for large wave-numbers coincides with the 
universal longitudinal velocity spectrum compiled by Gibson & Sehwarz (1963). 
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The measured higher-order correlations are presented in figures 6-8. For 
clarity, we have plotted only every third point of the measured correlations, 
except near r = 0, where the correlations change rapidly. The same procedure is 
adopted for the odd-order correlations to follow. Assuming that r = UT by 
Taylor's hypothesis and noting that Rm3"( -7) = Rnym(7), we find that all the 
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FIGURE 5. Normalized one-dimensional energy spect,ra. 0, M = 5.08 cm, U = 7-7 m/sec; 
0,111 = 2.54 cm, U = 15.7 m/sec; solid line is universal velocity spectrum from Gibson Br. 
Schwarz (1963). 

measured even-order correlations Rm>" are symmetrical functions of r .  The corre- 
lations are in remarkably close agreement with those presented by Frenkiel & 
Klebanoff (1967a), and therefore all flatness factors and other quantities derived 
from these correlations are also nearly identical with those given in I. Frenkiel & 
Klebanoff found that even-order correlations closely satisfied the quasi-Gaussian 
assumption, except for small values of U7/M.  Their conclusions obviously also 
apply to the present results, which depart from the appropriate Gaussian curves 
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FIGURE 6. Fourth-order correlations. U = 7.7 m/sec: 0, R2p2; 0, R3s1; A, R1,3. 
U = 15.7 m/sec: a, R2.2; 0, R3J; A, R13. Solid and dashed curves are from Frenkiel & 
Klebanoff (1967a). 
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FIGURE 7. Sixth-order correlations. U = 7.7 m/sec: 0, R3s3; 0, R 3 J ;  A, R2s4. 
U = 15.7 m/sec: a, R3~3; a, R4a2; A, R294. Solid and dashed curves are from Frenkiel & 
Klebanoff (1967a). 
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in precisely the same way. As shown in figure 6, the only noticeable deviation 
from the results of I is a small difference in R3J(7) for Ur/M > 1.7. Since the pre- 
sent data required no corrections for non-linear response of the hot wire, the 
excellent agreement with the results of I provides further confirmation that 
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FIGURE 8. Eighth-order correlation R4**. 0, 77 = 7.7 m/sec; m, U = 15.7 m/sec; 
-, Frenkiel & Klebanoff (1967a). 

corrections for non-linear response are negligible for even-order correlations and 
apparently illustrates the power of digital techniques as an accurate tool for 
turbulence measurements. There is also some evidence, discussed in 54.3, that 
this agreement reflects a certain gross insensitivity of even-order correlations 
with regard to certain filtering operations. 

4.3. Results for the odd-order correlations 

Unlike the even-order correlations, the data for the odd-order correlations showed 
variations between individual samples which increased as the order of the corre- 
lations increased. One expects that a larger amount of data will be required to 
describe odd-order correlations adequately, since they measure small departures 
from the Gaussian statistics which dominate the even-order correlations. The 
final measured correlations are therefore not as accurate as for even-order 
correlations, but the dispersion is sufficiently small that the averages of the 
four samples are fairly smooth. For the example shown in figure 9 the dispersion 
in the time skewness 8; = 3[R2J - R192] for the four individual samples is con- 
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siderably less than in the four samples presented for the same quantity in 1 as 
representative of the average of a total of 54 samples. An improvement in the 
scatter of individual samples is to be expected, as each sample contained nearly 
four times as many velocities in the present case, but one would expect the present 
averages over four samples to be somewhat less smooth as about one-third as 
much total data was used for the final averaged correlations. 
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FIGURE 9. Time skewness S = 3[R2J-R1*2]  for four individual samples of data; 
M = 2.54 em, U = 15.7 mjsec. 

For purely isotropic homogeneous turbulence, all two-point odd-order corre- 
lations Rm,a(r) are antisymmetrical functions of the spatial separation r of the 
two points. Assuming again that r = Ur by Taylor's hypothesis and noting that 
Rrn,"( - r )  = Rn,m(r), we can compare the form of the measured correlations with 
that expected for true isotropy. For the third-order correlations shown in figure 
10, we observe that R2J(r)  is a nearly antisymmetrical function of Ur/M,  whose 
negative branch reaches a somewhat larger maximum than is reached for 
positive Ur/M.  The assumption of isotropy therefore appears reasonably ade- 
quate for the third-order correlations downstream of a grid. The opposite con- 
clusion has been reached by Frenkiel & Klebanoff, who found R2J(0) = 0-05 and 
a maximum value of R2J(r)  of about 0.057. Fifth- and seventh-order correlations 
are plotted in figures 11-13. None of the correlations is perfectly antisymmetrical 
with respect to U r / M ,  but they show a strong tendency toward antisymmetry, 
and the correlations are strikingly different from those reported in I and 11. 
Except for R3*2(r), the magnitude of the correlations for negative Ur/M is con- 
sistently somewhat larger than for positive Ur/M.  Apart from this systematic 
behaviour, the assumption of isotropy appears to be qualitatively satisfied. One 
notes from the increasing undulations in the curves that even the substantial 
amount of data used in the present measurements becomes increasingly less 
adequate as both the order of the correlations and Ur/M increase. 
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317 = 2.54 cm, U = 15.7 m/sec: a, R z J ;  0, R1,2. -, Frenkiel & Klebanoff (1967a). 
FIGURE 10. Triple correlations. M = 5.08 cm, U = 7.7 m/sec: El, R2,'; 0, R1'2. 

I I I 1 1 1 1 1 
0.4 0 8  1.2 1.6 2.0 2.4 2.8 3.2 

-0.4 
0 

Ur/M 

FIGURE 11. Fifth-order correlations. Af = 5.08 em, U = 7.7 m/sec: 0, R4J; 0, R1v4. 
M = 2.54 cm, U = 15-7 m/sec: ., R4J; 0, R19*. Solid lines are data of Frenkiel & 
Hlebanoff (1967b). Dashed lines obtained from present measured second- and third-order 
correlations ( M  = 2.54 cm, U = 15.7 m/see) using fourth-order non-Gaussian probability 
density. 
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The present odd-order correlations are in clear disagreement with those of I 
and 11. We have so far been able to deduce no entirely satisfactory explanation 
for these differences. There is, however, some experimental evidence that appears 
to be particularly relevant. The effect of using a high-pass filter to eliminate the 
d.c. level was briefly investigated in some preliminary attempts to digitize the 
present data. Correlations up to third-order were measured with and without the 
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FIGURE 12. Fifth-order correlations. M = 5.08 cm, U = 7.7 m/sec: n, Rapa; 0, R 2 J .  
M = 2.54 em, U = 15.7 mjsec: m, R ~ T ~ ;  0, R2,3. Solid lines are data of Frenkiel & 
Klebanoff (1967b). Dashed lines obtained from present measured second- and third-order 
correlations ( M  = 2.54 cm, U = 15.7 m/sec) using fourth-order non-Gaussian probability 
density. 

filter. While the double correlation was practically unaffected by filtering, the 
triple correlations were substantially different for the two cases. As shown in 
figure 14, high-pass filtering (Kronhite 335-M filter with cut-off set a t  1.9 Hz) 
changed the (us) from a nearly zero value to a positive value close to that re- 
ported in 11, and the entire triple correlation curves closely resemble those re- 
ported in 11. Noting that the compensated hot-wire amplifier used in I and I1 was 
ax. coupled and had low-frequency attenuation and phase-shift characteristics 
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FIGURE 13. Seventh-order correlations. M = 5.08 em, U = 7.7 m/sec: 0, R6,'; 0, R1,6. 
111 = 2.54 em, U = 15.7 mlsec: m, R 6 J ;  0, R1.6. .-., obtained from measured second- 
and third-order correlations ( M  = 2.54 em, U = 15.7 m/sec) using fourth-order non- 
Gaussian probability density. - - -, obtained from measured second-, third- and fifth-order 
correlations ( M  = 2.54 em, U = 15.7 m/sec) using sixth-order non-Gaussian probability 
densit,y. 
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FIGURE 14. Effect of high-pass filter on measured triple correlations. Solid lines are pre- 
liminary data obtained without filter, dashed lines are preliminary data obtained using 
high-pass filter. 
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similar to our high-pass filter,? the non-zero values of (u3) (and quite likely higher 
odd powers of u) observed in I and I1 may have been due to  the effects of filtering 
on low-frequency velocity fluctuations. I n  support of this hypothesis, we note 
that the unpublished measurements of Harris and Corrsin cited in I1 as agreeing 
with the data of I1 with respect to the non-zero value of skewness and the form 
of the triple correlations also were obtained using a high-pass filter after the 
linearizer to eliminate the d.c. level.$ For all the data presented earlier in the 
present paper the d.c. level was removed simply by subtracting the mean value 
from each sampled velocity and the high-pass filter was not used. The possible 
significance of our preliminary (incorrect) filtered data with respect to other 
previous measurements was not fully appreciated during our preliminary 
measurements and other higher correlations were not determined using the 
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0 0.4 0.8 t.2 1.6 2.0 2 4  2.8 32 

FIGURE 15. Composite third-order correlation gzJ. 0, 11.17 = 5.08 cm, U = 7.7 m/sec; 
0, M = 2.54 cm, 77 = 15.7 m/sec. Solid curve is from Frenkiel & Klebanoff (1967b). 

filtered data. However, it appears quite likely from the above discussion that the 
non-zero values of (us) and (u7>, and the accompanying severe non-symmetry 
of the corresponding odd-order correlations reported in I and I1 were also caused 
by inadvertent high-pass filtering. If this is indeed the case, then the even-order 
correlations, which apparently were not noticeably affected, must be relatively 
insensitive to such a filtering operation. An analytical description of the effects of 
high-pass filtering on measuremements of higher moments of non-Gaussian 
processes would be a useful contribution at this point. 

Despite the large differences in individual correlations, all differences of corre- 
lations defined as Pjn = +(Rrn>n- Rnsm ) by Frenkiel & Klebanoff are found to be 
very close to the results given in I, as shown in figures 15-17. For small values of 
U r / M ,  near agreement is inevitable since the .5F," are required by definition to 
be zero at  Ur/M = 0, but the agreement is fairly good over the entire range of 
U T / M .  It appears that the 9 W n  are rather insensitive to the exact form of the 

t P. S. Klebanoff, private communication. 
1 S. Corrsin, private communication. 
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FIGVRE 16. Composite fifth-order correlations. M = 5.08 cm, U = 7.7 m/sec: 0, g4J; 
0, 3322. M = 2.54 cm, U = 15.7 m/sec: m, g4J; 0, L%?s,z. Solid curves are from Frenkiel 
& Klebanoff (1967a). .-., M = 2.54 em, U = 15.7 m/sec, obtained by using fourth-order 
non-Gaussian probability density. 

1 I I I I I I I 
0 0.4 0.8 1.2 1.6 2 0  2.4 2 8  32 

U7/iM 

FIGURE 17. Composite seventh-order correlations. 1U = 5.08 cm, U = 7.7 m/sec: 0, g6J; 
0, .9'?5,2; A, g 4 , 3 .  M = 2.54 cm, U = 15.7 m/sec: W, g6J; 0, $%5,2; A, g 4 s 3 .  Solid curves 
are from Frenkiel & Klebanoff (1967a). .-. and ---, M = 2.54 cm, U = 15.7 m/sec, 
obtained by using fourth- and sixth-order non-Gaussian probability densities, respectively. 
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correlations, and hence are not a discriminating measure of turbulent structure, 
especially for small values of UT/M.  

Since all the odd-order correlations would be zero if the joint probability den- 
sity function for the fluctuating velocity were Gaussian, it is of interest to  investi- 
gate the usefulness of non-Gaussian distributions in representing relations 
between odd-order moments. We have done this using the Gram-Charlier joint 
probability distribution described in detail in I and find that this distribution 
describes relations between the individual Rm,n correlations (and hence between 
the B?m$n as shown previously in I) remarkably well. Comparison of individual 
and composite (Smln) correlations with predictions from lower-order correlations 
using relations given in I are shown in figures 15-17. These comparisons verify (as 
discussed in I) that the fourth-order non-Gaussian distribution appears to be 
adequate for describing fift,h-order correlations in terms of lower-order ones, 
while a sixth-order distribution is needed to provide a good fit for the seventh- 
order correlations. In  view of the apparent success of the Gram-Charlier 
distribution in representing relations between odd-order correlations, it is 
unfortunate that a probability distribution function of this type has the patho- 
logical property of producing negative values for some parts of the distribution 
function. 

5. Conclusions 
The assumptions of isotropy appear t o  be qualitatively satisfied by the present 

measured odd-order correlations, in contrast with previous measurements by 
other investigators. The present data for higher-order correlations may therefore 
prove useful for quantitative comparison with corresponding theoretical pre- 
dictions for isotropic turbulence, when these become available. Differences in the 
low-frequency response of hot-wire amplifiers and associated instruments may 
account for the differences between the present data for odd-order correlations 
and that of earlier investigators. The present even-order correlations are generally 
in excellent agreement with previous measurements and, except for very small 
values of the time separation, higher correlations may be accurately predicted 
from a knowledge of only the second-order correlation by assuming a Gaussian 
joint probability density for fluctuations in velocity at  different times. Digital 
harmonic analysis employing the fast-Fourier transform provides a powerful 
and efficient technique for measuring two-point correlations of arbitrary order 
in turbulent flows. 
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